128 research outputs found

    Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting

    Get PDF
    Genetic analysis of Trypanosoma spp. depends on the detection of variation between strains. We have used the amplified fragment length polymorphism (AFLP) technique to develop a convenient and reliable method for genetic characterization of Trypanosome (sub)species. AFLP accesses multiple independent sites within the genome and would allow a better definition of the relatedness of different Trypanosome (sub)species. Nine isolates (3 from each T. brucei subspecies) were tested with 40 AFLP primer combinations to identify the most appropriate pairs of restriction endonucleases and selective primers. Primers based on the recognition sequences of EcoRI and BglII were chosen and used to analyse 31 T. brucei isolates. Similarity levels calculated with the Pearson correlation coefficient ranged from 15 to 98%, and clusters were determined using the unweighted pair-group method using arithmetic averages (UPGMA). At the intraspecific level, AFLP fingerprints were grouped by numerical analysis in 2 main clusters, allowing a clear separation of T. b. gambiense (cluster I) from T. b. brucei and T. b. rhodesiense isolates (cluster II). Interspecies evaluation of this customized approach produced heterogeneous AFLP patterns, with unique genetic markers, except for T. evansi and T. equiperdum, which showed identical patterns and clustered together

    Systems biology in animal sciences

    Get PDF
    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed ‘omics’ technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A ‘system’ approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with ‘system approaches’ in animal sciences, providing exciting opportunities to predict and modulate animal traits

    Techniques for evaluating nutrient status in farm animals

    Get PDF
    It is the aim of the study to present a literature review on methods and techniques for determining nutrient status of different farm animal species (ruminants, pigs and poultry). The study focusses especially on the options to determine nutrient status in farm animals from a research perspective rather than on the possibilities for their practical application and related technical issues

    Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities

    Get PDF
    Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management Genetic improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus (behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable copy numbers and nutrigenomics are discussed including their promising future value for dairy cow fertility

    Muscle transcriptomes of Duroc and Pietrain pig breeds during prenatal formation of skeletal muscle tissue using microarray technology

    Get PDF
    Mammalian myogenesis is an exclusive prenatal process regulated by the muscle regulatory factor gene family, which itself is regulated by numerous other genes. We developed a microarray consisting of the clones of two muscle-specific cDNA libraries with the addition of 500 genes with known function in myogenesis and energy metabolism. Tissue samples were collected of Duroc and Pietrain prenatal litters of 14 and 21 days of age (complete embryos) and 35, 49, 63, 77, and 91 days of age (longissimus muscle tissue) and RNA was isolated. Microarrays were hybridised with pools of six RNA samples. For each age comparisons between Duroc and Pietrain breeds were made, and transcriptome profile changes in time were made for Duroc pigs. Comparison of Duroc and Pietrain prenatal muscle transcriptome expression profiles revealed differences in myogenesis regulating genes, suggesting differential timing of myogenesis between the two pig breeds. The differential development of the expression of the muscle structural genes strengthens this conclusion. Furthermore, differences in the expression of the energy metabolism genes were found. The results also suggest that the differential fat content between the Duroc and Pietrain pig breeds already starts to develop during early prenatal development. The changes in the muscle transcriptome expression profiles during Duroc prenatal muscle development shows a profile of waves of expression of (i) myoblast proliferation stimulating genes,(ii) followed by myoblast proliferation inhibiting and differentiation stimulating genes during the primary muscle fibre development, which is repeated with lower magnitude during secondary muscle fibre development. Furthermore, expression of energy metabolism genes reaches a nadir when differentiation of myoblasts into myotubes takes place. Microarray expression profiles were validated with five genes showing differential expression in the Duroc ¿ Pietrain comparison, and in the Duroc development in time studies using 18S rRNA for normalisation. The real time PCR confirmed the microarray result

    Gene expression patterns in anterior pituitary associated with quantitative measure of oestrous behaviour in dairy cows

    Get PDF
    Intensive selection for high milk yield in dairy cows has raised production levels substantially but at the cost of reduced fertility, which manifests in different ways including reduced expression of oestrous behaviour. The genomic regulation of oestrous behaviour in bovines remains largely unknown. Here, we aimed to identify and study those genes that were associated with oestrous behaviour among genes expressed in the bovine anterior pituitary either at the start of oestrous cycle or at the mid-cycle (around day 12 of cycle), or regardless of the phase of cycle. Oestrous behaviour was recorded in each of 28 primiparous cows from 30 days in milk onwards till the day of their sacrifice (between 77 and 139 days in milk) and quantified as heat scores. An average heat score value was calculated for each cow from heat scores observed during consecutive oestrous cycles excluding the cycle on the day of sacrifice. A microarray experiment was designed to measure gene expression in the anterior pituitary of these cows, 14 of which were sacrificed at the start of oestrous cycle (day 0) and 14 around day 12 of cycle (day 12). Gene expression was modelled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model on data from day 0 cows alone (analysis 1), day 12 cows alone (analysis 2) and the combined data from day 0 and day 12 cows (analysis 3). Genes whose expression patterns showed significant linear or non-linear relationships with average heat scores were identified in all three analyses (177, 142 and 118 genes, respectively). Gene ontology terms enriched among genes identified in analysis 1 revealed processes associated with expression of oestrous behaviour whereas the terms enriched among genes identified in analysis 2 and 3 were general processes which may facilitate proper expression of oestrous behaviour at the subsequent oestrus. Studying these genes will help to improve our understanding of the genomic regulation of oestrous behaviour, ultimately leading to better management strategies and tools to improve or monitor reproductive performance in bovines

    Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model

    Get PDF
    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases

    How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by RAPD and multiplex-endonuclease genotyping approach.

    Get PDF
    The pathogenic trypanosomes Trypanosoma equiperdum, T. evansi as well as T. brucei are morphologically identical. In horses, these parasites are considered to cause respectively dourine, surra and nagana. Previous molecular attempts to differentiate these species were not successful for T. evansi and T. equiperdum; only T. b. brucei could be differentiated to a certain extent. In this study we analysed 10 T. equiperdum, 8 T. evansi and 4 T. b. brucei using Random Amplified Polymorphic DNA (RAPD) and multiplex-endonuclease fingerprinting, a modified AFLP technique. The results obtained confirm the homogeneity of the T. evansi group tested. The T. b. brucei clustered out in a heterogenous group. For T. equiperdum the situation is more complex: 8 out of 10 T. equiperdum clustered together with the T. evansi group, while 2 T. equiperdum strains were more related to T. b. brucei. Hence, 2 hypotheses can be formulated: (1) only 2 T. equiperdum strains are genuine T. equiperdum causing dourine; all other T. equiperdum strains actually are T. evansi causing surra or (2) T. equiperdum does not exist at all. In that case, the different clinical outcome of horse infections with T. evansi or T. b. brucei is primarily related to the host immune response
    • …
    corecore